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CONTRIBUTION TO THE PROBLEM OF BUCKLING OF ORTHOTROPIC

PLATES, WITH SPECIAL REFERENCE TO PLYWOOD*

By Wilhelm Thielemann

The first part of the present report deals with the theory of
elasticity of orthotropic plates. The general differential equation
of the bending surface of orthotropic rectangular plates whose principal
directions of stiffness we not parallel to the plate edges (general-
orthotropic plate) is indicated. The possibility of applying the theory
of elasticity of orthotropic plates to plywood is investigated and the
relationship between the elastic moduli and the angle between the load
direction and the principal stiffness directions is described for
plywood of various constructions.

The second part is concerned with the stability equation of the
general+rthotropic rectangular plate under uniform shear and axial
loads. This differential equation, wh~ch, compared to the differential
equation of the orthotropic rectangular plate whose principal directions
of stiffness are parallel to the plate edges, contains additional terms,
can be solved for a very long plate strip by the Southwell+kan formula
for the isotropic plate strip. Besides the exact solution an approximate
solution is given. For the most important practical case of orthotropic
plate strips, whose principal directions of stiffness are inclined at 45°
with respect to the plate edges, the buckling loads and buckling lengths
in pure compression and pure shear are plotted against the stiffness
values of the plate. For the special stiffness values of plywood plates
of various constructions, the buckling loads and buckling wave lengths
were determined for all inclinations of principal stiffness directions
(Oo to 18oo) relative to plate edges and also plotted for pure compressive
and pure shear loading.

*“Beitrag zur Frage der Beul~g ortlmtroper Platten, insbesondere
von Sperrholzplatten.”
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I. INTRODUCTION

Thin plywood strips are frequently used in airplane designs as spar
webs, wing covering, etc. They are subjected to forces within the total
assembly of the structural member which usually lie in its plane and
stress the plates in compression or shear. Since the plates ere fre–
quently cut so thin that buckling under such loads is to be expected,
the knowledge of the critical loads at which the plates change from
their originally straight, stable position into a new, buckled position
should be of interest.

Being built up of plies at right angles to each other, the plywood
plates are ‘regerdedas orthogonally-anisotropicplates (orthotropic
plates according to the term introduced by Huber). By its construction
the stiffness of the plate is dependent on the position of the elastic
axis relative to the direction of the fiber (grain).

Although the plywood plate cannot be termed completely homogeneous
because of the violent property fluctuations over the wall thickness,
the subsequent investigations of the buckling stiffness of orthotropic
plates nevertheless are generally made for a homogeneous orthotropic
and elastic material. The effect of the incomplete homogeneity of the
plywood plate on the stiffness, etc., is particularly investigated.

The problem of stability of orthotropic plates has been treated
by C. Schmieden (reference 1), Bergmann+?eissner (reference 2), and
Seydel (reference 3), with special reference to the case of pure shear
loading in connection with the Southwell+kan investigations on the
stability of isotropic plates (reference 4). Basic investigations on
the orthotropic plate have been made by Huber (reference ~) who also
set up t“~edifferential equation of bending of the orthotropic plate.
Further data on the stability of orthotropic plates, including the
data on buckling load under compressive stress, are given by Timoshenko
(reference 6).

But all these reports deal only with orthotropic plates with
principal directions of stiffness (on plywood, the directions of the
grain of the inner and outer ply) parallel to the edges of the rectan-
gular plate (termed “special orthotropic plate” hereinafter). For the
use of orthotropic plates, especially of plywocd, as spar or wing
covering, however, the knowledge of the buckling strength of plates
with principal stiffness other than parallel to the edges is of interest.

In spars with plywood webs the direction of the fibers Is usually
at 45° to the flanges, since under shearing stress - apart from an
increase in shear stiffness - a substantial increase in buckling load and
hence often also in the ultimate load of the web relative to a plate
fixed parallel can be obtained.
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In order to include these important practical cases also, the
problem of buckling of special+rthotropic plates, so exhaustively
explored by Seydel for shear load, is extended to include the problem
of buckling of orthotropic’plates with arbitrary principal stiffnesses
relative to the plate edges (termed “general-orthotropic
hereinafter).

II. THEORY OFELA

GENERAL–ORTHO

The investigation of buckling
reauires a closer insight into the

STICITY OFT

plate”

HE

TROPIC PLATE

of the general+rthotropic plate
elasticity theory of such plates.

Th; general-orthotropi;plate is characterized by the inclination of
the principal stiffness directions (of the principal axes system) of
the plate with respect to the coordinate system to which the stresses
and strains me referred. For the special-orthotropicplate, the
principal system of exes is coincident with the coordinate system
(figs. l(a) and l(b)). The inclination of the principal system of
axes with respect to the system of coordinates of the plate necessitates
a construction of the laws of elongation of the general+rthotropic
plate which, compared to the strain laws of the special+rthotropic
plate, contains additional terms. Whereas the elastic properties of
the special+rthotropic plate can be defined by four elasticity
constants, the identification of the properties of the general-
orthotropic plate requires the knowledge of six constants. Hence,
aside from”the stress—strain law — as will be shown in the subsequent
sections – the differential equation of the bending surface, and the
equation of energy of the general+rthotropic plate for the bending
of these plates (both equations being used for the further investi—
gation), two additional terms are obtained which contain these new
additive elastic constants.

1. The General Stress+3train Law of the Orthotropic

Plate (Plane Stress Condition)

(a) The Elongation Equations

The law of elongation of the general+rthotropic plate can be
written in the form (reference 5)

‘X=~~’UX+5#Uy?93’T

~y ‘~1’~x+~2t~y+~3tT

7 = ~31tfJx+ U32tIJy+ ~33tT
}

(1)

‘?!?,
■am- —.
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The moduli of elasticity at for the coordinate system xy are
dependent on the angle u of the system, which the principal axes
system forms with the coordinate system. (These general moduli of
elasticity are hereafter denoted by atik, the special moduli (for the

case u = O) with aik.)

It can be proved (reference 5) that the symmetry conditions

elongation law of the general+rthotropic plate is represented by six
elastic constants.

The moduli a13t and a23t in equation (1) are a measure for

the elongations due to shear stresses in the general case (u # O) and
the displacements induced by axial stresses, respectively.

These moduli a13t and ~3t disappear in the “caseof the special

orthotropic plate (m = O) as will be shown later, so that this case is
characterized by four constants.

Introduction of the conventional reciprocal expressions for the
moduli of elasticity

1 1 v11 v22all-= —; %?2 . —; a12
% E22

‘%=-E== –—; a33=~
E22

gives for the case of special orthotropy the equations:

1
E,, h‘x = ~l”x + a@y = — )– Vllay

1
1

‘Y = Cqaux + CL22CTY= —
E22 (‘Y –

v220$

I

(la)

y.a33T.L
G J

-,
On top of that, all = 92 .;, for the case of the isotropic plate,

so that the equations of elongation read:

cm ox + a12uy

a12ax + alloy

a33T ‘;

1.—
E ((YX— vUy]

1.—
E (‘Y )

— Vlsx

I

(lb)
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And since a further relation can be established between the
moduli all, a12, end

material are reduced .to?~:.

the elastic constants for isotropic

(b) Determination of Moduli of Elasticity

For the general-rthotropic plate, the elastic constants in
equation (1) are dependent on the angle m formed by the principal
axes of the orthotropic plate with the coordinate system. In the
following, the moduli of elasticity for any system of coordinates
orientated with respect to the principal axes of the plate sre determined
in relation to the modu.liof elasticity for the principal axes direction
and the angle formed by the coordinate axes relative to the principal
axes.

From a general-orthotropic plate element of which one principal
sxis is inclined at angle o to the x axis, a rectangle is cut out in
such a way that the edges of the rectangle lie parallel to the principal
axes of the plate element. The plate element is loaded along its
by the stresses ax) aY

and T (fig. 2). These stresses in turn

stresses al> 029 and To at the cut-out rectangle, which can be

indicated immediately for the plane stress condition with the aid
the conversion formulas

(J1= ox Cos% + ay sin2m – 2T Sin CDCOS (D

02 = ax sin2w + cryCOS2U + 2T Sin (DCOS W

TO =uxsinucosm— uysinmcosa + T(COS2(D— Sin2LD)
>

Denoting the diagonal of the rectangular element parallel to
x axis with 1, the sides of the rectangle have the lengths sin m
and cos u (fig. 3(a)). Let LSL1 and A12 be the displacement

components of a rectangular point of the element distorted by the
stresses al, U2, and To along the edges of the rectangle. The

displacement components of the rectangular point along the x axis,

edges
introduce

of

(2)

the

that
is, the elongation of the rectangular diagonal of magnitude 1, can be
read from figure 3(b) as

6X =Alx=Allcosu+A12 sinm (3a)

i

I\r,
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The angle of sheering strain through which the connecting line of the
distorted rectangular point has turned with respect to its original
position - that is, the x sxis –is (fig. 3(b)):

[ 17=2-+-sj-n~+N2cos CD (3b)*

From a corresponding rectangular element, whose diagonal of length 1
runs parallel to the y axis, the displacement component of the rectangular
point and the elongation along the y exis follow as

‘Y =Aly=Allsinu+A12 cosm (3C)

The displacement components fsL~ and LQ2 along the rectangular sides

consist of displacements due to axial strain, transverse contraction,
and shearing strain of the rectangular element.

From figures 4(a) to 4(c), where the several contributions of
the deformation strain are represented separately, follow immediately:

(a) The displacement due to longitudinal deformation

All = El Cos u)= ulall cos CD

‘2 = 62 sin u = 0292 sin m
}

(b) Displacement due to transverse contraction

(c) Displacement due to shearing deformation

sin uAJl=70~= sin m
‘oa33 2 1

A12=y ?= Cos u
o ‘oa33 -Z- J

(4a)

(4b)

(4C)

-x
NACA Reviewer’s note: This equation was incorrectly written as
-AII sin m + A12 cos u in the original German version of this paper.
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The expressions (4a) to (4c) introduced in equation (3a) give
elongation ex

sin m cos u
Ex = UIUH COS2U + u2a12 COS2U + TOU33

2

sin CDcos m+ u2~2 sin% + ula12 sin%+Toa33 a

The stresses U19 02> and To can be re@aced by means of the

equations (2) by the stresses %> ‘Y ad
T, so that the final expression

for the elongation 6X of the general-orthotropicplate reads

[
4

6X = ax all cos CD+
1(aala + ass) sin2m COS2mJ+ %2 sin4m

[
+ UY(%l ( )+a22)cos2w sin2m + a12 COS4U + sin4u 2

– a33 1
cos CDsin2m

[(+ T –2 all Cos’%11–

+ @12 + a33) sin

)Cfqasin2m sin u cos o

u)Cos m (
2Cos m ]— sin2m (~a)

The shesring strain of the general-orthotropicplate follows
from equations (3b) and (4a) to (4c) as

[(7 = ax –2 all cos2m – c92 sin2m) sin u cos m

+ (aala+ass) sin CDcos CD (ios% – sin%)]

[(+ cry-2 all sin% – c92 COS2CD)sin CDcos u

-( pala + a33) sin m cos u ( )]COS2U - sin2m

1 )+ T 4(UU + %2 – 2a12 COS2U sin% + a33 (cos2~- sin2~)~ (5b)

,—--.,,,.,. .,.. ,.,,
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The elongation Cy can be found by corresponding considerations

equation (3c) as 1

[
CJX(au + U22) cos2m sin2m 1+~12(.0s40 + sin4m) - CL33sin2m cos2u

[
.4 (2q2 + a33) sin2m cos2m ++ % all ‘=n m +

[
+ T -+(all sin% – %2 COS2U) sin u cos o

(–(2a12 + a33) cos u sin m COS2U )]— sin2w

Comparison of the coefficients of equation
the moduli of elasticity of a coordinate system

1C@ COAD

(~c)

(1) and (5) yields for
inclined at the angle m

relative to one principal axis, the following relations

all (‘ = all cos4~ + %2 + ~33) sin2u COS2U

a22~ = 2a12 + a33) sin2m COS2U~ sin4u + (

cq2~ = (+L1 + ’22) co92u sin2m +

(
t=4a

’33 11 + ’22 – 2%2) COS%!J

%3’ = (
–2 all COS2U – %2 sin2u)

( )+ 2u12 + a33 sin u cos u

’23’ = (
–2 all sin2m – cqlaCos?m)

- (2%2 + a33) cos m sin m

a12 (
4Cos U

4+ cq2 sin u 1
4+ c@ Cos CD

4+ sin u) – ’33 sin2m cos2u

‘in2w+ ’33 (
2Cos u — sin2u)

}

(6)

( 2cos m - sin2u)

sin u cos m I
(COS2UJ- sin2u3)

As essential result of the determination of the moduli of elasticity,
it is found that the six constants of the general-orthotropic plate can
be derived from the four constants of the specialarthotropic plate
(principal direction constants all, ~2, a12, and a33), so that

additional experimental determinations of moduli on plates beyond these
four quantities are not necess~y.
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For isotropic material,
modulus of rigidity, Young’s

the conventional relation between the
modulus, and transverse contraction exists

2(1 + v)

It is logical to expect a corresponding
material; so that here also the experimental
modu’lusof rigidity would be superfluous.

(7)

relation for orthotropic
determination of the

The modulus of rigidity of a general-orthotropic plate is according
to equation (6)

This reldtion

independent of the

%?2 – 2a12) sin2m COS2U + a33 (
2

)2 2 (6a)cos u - sin m

indicates that the modulus of rigidity
a33’ ‘s

modulus
a33

valid for the principal direction of

the orthotropic plate only when m = 45° (hence, when the directions of
the principal sxes of the plate coincide with the principal stress
directions in pure shear) amd that the dependence is limited to the
moduli of elasticity and transverse
directions. Hence, in this case

a33 ‘=all+

Written in the conventional manner,

G! =

Hertel

1 .
1 +1 + Vll + V22—— ——

%1 E22 Ell E22

contractions in the principal

a22 – 252 (8)

equation (8) reads:

‘11E22
(8a)

%1(1 +V22) ‘E22 (1 +Vlj

(reference 7, p. 135) also derived this equation for this
particular case (CJ= 45°) for the shear modulus of plywood (reference 7).
In all other cases (m # 45°) the determination of shear modulus a33~

is predicated on the knowledge of shear modulus a33 for the principal

axis (w ,=O). Even in the case ~=450” the experimental determination
of a33

cannot be dispensed withy since modulus a33 must be known in

order to determine the moduli of elasticity all’s CL22’~and a12*, in

this direction, according to equation (6).
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So, in contrast to the isotropic plate, the experimental determi–
nation of the shear modulus a33 independently of all other principal

elasticity moduli ,is necesssry in every case.

In this connection, another particular case of the general-
orthotropic plate is pointed out:

If, as may happen in measurements, the relation

% ’92 – 2a12 = a33

exists between the moduli of the principal sxes, the moduli of the
@ate in the remaining directions (O # O) me

cq2f = %2 = Constant

a33
t=~ 33 = Constant

all
t=~ (11 COS4CD+ all + %2) sin2m COS20J+ %2 sin4m

1(lo)

%?2~ = all sin4m +
( )all + %2.

4sin2u cos2u + CL22cos m

all’ + %’2f = all + %2 = Constant

(
CX13’=~3’ = ~2-all

)
sin m cos m

J

as is readily apparent from equations (6).

Thus, in this particular case, the modulus of she= and the
modulus of transverse contraction are independent of the angle of
direction, while moduli all?, 9283 a13t~ and q3t continue to be

dependent on O.

A particular case of this kind, in which the general-orthotropic
plate has isotropic properties with respect to a33’ ‘d alp” ‘s
represented in close approximation by a thee-ply beech plywood plate.
(Compsre Section II 5, fig. 18(a).)

For completeness the derivation of (7) governing isotropic waterial
from equations (6) and (10)”is included.



NACA TM 1263 11

For isotropic material all mcduli must be independent of m, that
is, be constant in every direction. The requirement is met, according
to equations (10) when the following relations exist:.,—.

all = %2

(11)

% + %22 – 2a12 = a33

Utilizing the first equation of (11); the second takes the form

(12)

and this equation corresponds,-in different form, exactly to the
relation (7).

Equations (7) show further that the moduli of elasticity a13~

and %31 disappear for u = 0° and 90°, that is~ for the principal

axes directions. They also disappear for the particular case U = 450,
when the principal moduli of elasticity all and %2 me of equal

magnitude.

It is to be noted further that in

are valid.

(c) The Stress Equations

the case u = 45° the relations

a13’ = %3’

To continue the study of the orthotropic plate, the presentation
of the stress
is required.
solution with
have the form

condition in the plate in relation to the strain condition
These relations can be obtained from equation (1) by
respect to the stress components. The ensuing equations

Oy = a21t~x + a22’cY + a23’y

T = a31*Gx + a32tc
Y + a33’7

(13)
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The connections between the elasticity moduli a? and the elastic
parameters at may be obtained according to the rules of solving
equation systems.

Accordingly

Al 4 AJ
‘%=~~y=~ T= (14)

A

where A represents the determhants of the system of equations (l):

while the quantities

determinants:

‘x %2’ a13’

‘y %22’ 93’

I 7 U32r a33r

%’ a12‘ a13‘

A= C@lt apz~ cQ3~

a31’ ’32’ ’33t

(15)

~, ~, and ~ me indicated by the following

all1 ‘x %3 t

%21‘ ‘y %?3t

Ia31t 7 a33’

A3 =

‘llt a12’ ‘x

91’ %t ‘Y

’31’ a32’ ~

The solution of the determinants (16), while msking use of the
equations (14), gives

(
&x = a22~a33~ -93

‘%+ (-,z’ass’ + a,3t~3)’Y

(
+ %2’%23’ )

-q2tq3’ 7

( )(
by = *12’a33r + a13’~3’ Ex + all’a33’ –a13

)
tz ~y

( )
+ a12’a13’ – allr~3’ 7

( )( )
AT= ~2~a23? –~2ra13t cx + a12ta13t –a~11~3r Cy

(+ %1’%2’ - ’12 )
!2 7

(16)

(17)
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b

A=

The solution of the determinants gives

(
Ulltq2”’Cl.33’- ~11’~3

)
*2 + ~21a13’2 + a33’~2t2 + 2~2*a~3t~3?

(15a)

As can be proved titer considerable calculation by introduction
of (6) in (15a), quantity A - for an orthotropic plate with properties
defined by the four principal constants – is an invariant, which is
independent of the position of the coordinate system relative to the
principal “axes,and which gives

( )A=a33 ‘%%2-%J (15b)

Comparison of the coefficients between the equations (16) and (17)
gives the connections between the elasticity moduli at end the elastic
hexameters at:

~11
t2r .~2ra33t –93

%2 ‘ = Aa211 = -a121a33r + a13t~3’

.

~22 ‘ = all’a33t -a13
,2

’33 ‘ = ‘%lt%22’ -a12
12

%3 ‘ ‘Aa31t ‘%2%’3r ‘%2ra13’

’23 r = ’32 t = a12ta13’ -%_l’%3t

The equations (18) indicate that the six elastic
of the generalarthotropic plate, like the elasticity

(18)

parameters ar
moduli a’, can

Il..,,,. ..=..=,.,.,-. ,,-. .---=
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●

be represented with respect to the four elasticity moduli all, %2,

a12~ and a33 of the special-orthotropicplate in the principal

directions, and which gives, after introduction of equations (6)
in (18):

4
all’ ‘— COS2U sin2m +

a33

4a22* . — cos% sin% +
a33

4a12t =.— COS2UJsin2u +
’33

..

4 4all sin u + ~2 cos o - 2a12 COS2U sin%

wl%2 – %22

4 4all cos w + qz sin m - 2a12 cos% sin%

%Lla22 – %122

( )all + 92 COS% sin% – a12 sin4m + COS4U

all%2 — a’122

(%sin _ COS2J2 all + ap2 + 2a12 COS2U sin2m

a33’ =
+

a33 all%2 – cQ22

*

[

&~lnG-cos%)+ (*11 sin%+~2 cos%—a12 sin2m -Cos%

a13 1)f.-COSusin m

allw2 – a122

[

.
*

2
( )

all cos2u–u22 sin2u)-a12 sin%– cos%
a23 1)~=cosmsinm— sin2m —COS%D +

a33 all%2 – a122

(18a)

In the case of the special-orthotropicplate, the expressions for a
are considerably simplified, since a13~ and a’23’ disappear, and result

in the conventional relations already indicated by Huber (reference 5):

*These two equations were incorrect in the original version of the
paper and have been corrected by the NACA Reviewer.
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all =
,,, , .,.

a22 =

a12 =

a33 =

?= ‘%22 . %1

%1%2 - a122
1 - V11V22

,.

-=
all E22=

A
‘11%2 -922,

== –UK?
A

%lla22 – ‘%22

%la22 - %122

A

_l=G

’33

1
– ‘11V22

V11E22
‘l– V11V22

v22E11=
1- VllV22

a13 = a23 = 0

b

The stress equations of the special.-orthotropicplate read then:

’11
Ux=l

– V11V22

v22%1
~Y=l – V11V22

v11E22:x +
l– V1lV’22

E22
~x+l

– ‘11V22

~=G7

The further simplified confidantsfor isotropic material read:

E VEall = a22 = ; a12 =—;a
12 12

33=G
-v -v

and the stress equations take the conventional form

u~ ‘+( ’X+ V’Y)
1 -v

E
(‘Y=>v@ ‘Y)

T = G7

(19)

(20)

(21)

(22)
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I

For the subsequent applications, the elastic parameters of
orthotropic plate for the case ~ = 450 are also of interest.

Equations (18a) give for this case:

a general-

.

1
all

+L
‘=a22”-

a33 4

all + a22 - 2%2 . ~ , ~ %1 + E22 + %1%

alla22 -32’ ‘“ 4 1- ‘~~’pp

1
– 2a12

+ I all + ’22 =4+$
’11 + ’22 + 2V11E22

a121 = ——
r

(23)

a33 ?1%2 – a122
1 – ‘11’22

,_~%l+%2+2h2 1
a33 -4

.—

all%22 – a122
4

* all - a22
a13‘ = a23’ = t

alla22 -’122

for

the

In this particular case

allf = a22’

both the elastic parameters

’11 + ’22
–2vE

11 22

1 – ‘11’22

4
_ 1 E22 –%

-11
– ‘11’22

and 53’ = a23’

as for the moduli of elasticity.

(23a)

It further follows that the constants a13‘ = a23’ disappear, when

principal moduli of elasticity Ell snd E22 are of equal magnitude.

The representation of the buckling loads (determined in the second
pmt of the report) for the particular case m = 45° and 135°, respec–
tively, is referred to the two stiffness ratios.

’23’ a23’—.
’33’ _ a12’ + 2a33’
——

D22 ‘ a22$ ‘d D22? a22’

A limiting value consideration for these two expressions is added
at this time.

*
This equation was incorrect in the orginal version of this paper

and has been corrected by the NACA Reviewer.
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With equations (23) the stiffness ratios ~, and..& canbe
.. D22~

represented with respect to the modu.liof elasticity of the principal
,. axes; ‘theythen assume the form

A& (1 -v1fJ22) + ‘& (3 - Q + 3

5=
D22’ ~ G

(
—1

)
’22

%1 ( )- ‘11V22 + q 1 + 2V11 + 1

E22 .—- 1
D23t %1
—=

’22‘

(
4~1

)
’22

(– ‘11V22 + E= 1
’11

D33’
The limiting value which — can assume for

’22‘

is & = 3 and for the limiting case E22 =

)+2V11”+ 1

(24)

~& ( )1 – V11V22 + 3

w= ’11

(
’22’ -4&l

’11 )– ‘11V22 + 1

The modulus of shear can assume

(24b)

the limiting case %1
=CO

o

G = O the result is again ‘==3
Dt
22

’33’ swise, it can be shown that — .
’22‘

values between O and

and for G=co, D~=
’22

m: for

-1. Like-

D33 J
for E22 = m, -d ~ = 3 and –1,

22‘
respectively, for Ell = O, depending upon whether the modulus G takes
the value O or CO.
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( )The~elimination of term 4 ~ 1 –VllV.22 from the two equations
’11 ,,

’33’ and ’23’
for — — leaves a relation %etween these expressions from

Di
22 ’22‘

which the terms with v cancel out:

D23’
4 —— .

(
1

D221
+ )!3i
D22‘

E22 ~—_

%1

’22
—*1
E
11

~;~mtor$~-1) : (~+1) assumesvaluesbetween-landl,

— passes through all possible values between O and m, so thatwhen Ell

’23’
the limiting values of ~ follow the equation

22‘

’23t

P
22

l+D~
D
22

4
(24c)

D231
This investigation indicates that the pair of values

ad ‘~
’22‘

D22t
exist only in a field that is bounded by the two straight

lines

D33‘

D231 l+Di
D22~

l+fi
— = ’23’

and-=— ??

’22t 4 ’22‘ 4

D?
and by the straight line ~ .3 (fig. 5a).

D
22
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2. Bending of General*thotropic Plates

The theory of bending of general+mthotropic plates follows the
classical theory of bending; hence, first of all, the assumptions that
the plate thickness is ~mall and that the deflection of the plate itself
is small compared to plate thickness.

On the basis of the coordinate system conformable to figure 5b, the
intersection moments of the plate read as usual

J
s/2 b/2 s/2

Mx = axZ dz; ~=f UYZ dz; ~X =
f

TZ dz (25)
-s/2 -s/2 -s/2

The condition of equilibrium between the specific load p of the
plate applied at an element and the moments %s ~~ and MY reads:

This equilibrium condition is

d2My
+— +p.o
ay2

(26)

independent of the elastic properties
of the plate, and holds for the isotropic as for the orthotropic plate.

The plate is bent by the moments. Assuming, as usual, a linear
strain distribution over the plate thickness, a point of the plate
distant by X from the center is, as a result of the curvat~e of the
plate, subjected to the distortion

%w
‘x =+z—

&2

y=_2zd%

axy

w = deflection of plate.

. (27)

*Corrected by NACA Reviewer.
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Introducing the stresses of the generalwrthotropic plate in the
expressions (2.5)for the moments of the plate according h equation (15),
while replacing at the same time the distortions appearing in these
expressions by the equations (27), gives the moments of the plate, when
the integral is extended over the plate width, as:

s/2 s/2
~=f axZ dz =

f[
all’Cx

1
+ a12’ Gy + a13’y z dz

-s/2 +/2

J
s/2 @/2

‘Y =
C7YZdz =

J[ a211~x + .a22’cy 1.+a23’7z dz
-s/2 -s/2

(28)

S3

(

daw a2w

)
a2w

‘Y = –~ ala’ p+ a22’
—+ 2a23’ ~
aya

s/2 s/2

‘Y=~s,2Tz dz = 1[ 1ajl’cx+a32’Gy+a33’7zdz
-s/2

S3
~y.–z

(-

, i% Yw

)

+ d2w-
a~3 3X2 + a23’

—+ 2a33 ~
aya

The second derivatives of equations (28), formed and entered in
the equilibrium condition (26), give the differential equation of the
elastic surface of the general+rthotropic plate:

S3

[

akw &wah +4a131—— all!—
( )+ 2a121 + 4a —

12 &4 dx3dy 33’ ~x2~y2

+ 4a23;
~4w 1~4w_p=o+“a22t—

dxay3 ~y4
(29)

,
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.

and, after the abbreviations

0 -.-’-. ,. --,- -“. 3t=%
’11 12 an’

S3
’22’ = ~a22t

3t=~
(’33 12 *12’ + 2a33t)

(29a)

=13
t.~at

1: 13

31–s
’23 12 a23’

—.

the final form of the differential equation as

a4w
Dll~ —

a4w $w $w $w
+ 4D13V —

+ 2D33’ &2~y2
—+ D22’~=P

&4 ax%y + 4D23V ~xdy3 ay

(30)

Compared to the differential equations of the
isotropic and orthotropic plate, respectively, the
the mixed derivatives

$w ~d a4w

h%y &cays

elastic surface of the
additive terms with

appear; they identify the contribution of the elastic parameters a13‘
and a23s on the absorption of-the”load p.
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For the s~ecial-orthotro~icPlate, D13: and D23t disaPPesr and

the remaining constants assume the form indicated by Huber:

S3 ’11
%1==1

– V11V22

E22S3
D22 = =1 – ~Iv22

S3

(

E22 %
2D33 = ~ ‘u 1 _v ~v22 ‘V=Q 1

)

+ 4G
1 - vllV22

The differential equation of the elastic surface of the special–
orthotropic plate reads then

For the isotropic plate, when noting that

E1l = E22 = E

Vll =V22 .V

G=%-v)

2(1 – /)

can be put in (31), it finally gives

Dll = D22
= ’33

=D=@ E
121_v2

(32)
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and the differential equation can be written in the conventional form

(33)

3. The Internal Flexural Strain Ener~ of the

General~rthotropic Plate

The internal strain ener~
by the relation

of a plate can be generally represented

2Ai =
- maxEx

+ ‘YEY 1
+rydxdydz (34)

If the stresses ax, Oy, T in the bracketed term of equation (1)
are replaced according to equation (13) by the corresponding distortions,
the equation for the general-orthotropic plate can also be written in
the form

+ apl’cxcy + a22’~y2 + a23t7cy

+ a31’7cx 1f2dxdy dz+ a32s~y7 + a33 7 (35)

If the plate is stressed in bending by moments, the flexural
distortions Cx, c , and

Y
Y can be expressed again by the corresponding

plate curvatures, (equation 21), and gives, after integration with
respect to plate thiclmess s, the internal flexural strain energy of the—
general orthotropic plate

S3 JrAi=zJ ()#w 2ant — + 2a12~ &K&+

)

~2w 2 %’w d%
a22f + 4a13t ——

axz ax2 ayz s axp &y

(36) “
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For isotropic materi~, all’ = a22’ = all; in addition, the

constants a131 and a23’ disappear and the flexural energy follows as:

If, instead of the constants all’> a12~ and a33
the customary

reciprocal designations are used again, equation (37) can be replaced
by the known expression for the internal flexural strain energy of the
isotropic plate

4. Experimental Determination of the Moduli of Elasticity

of the General-Orthotropic Plate

The elastic properties of the generalarthotropic plate are
characterized by six moduli of elasticity. Inasmuch as, according to
equation (6), the six moduli of the general+rthotropic plate can be
determined from the moduli %1, %2, U12, and a33 for every direction

angle u, the determination of these four moduli is by itself sufficient
for a complete identification of the elastic properties of the plate.
But for an experimental check on the relationship between the moduli of
elasticity represented in equation (6) and the direction angle u it
seems appropriate to have a method available which permits the determina—
tion of all six moduli of the plate.

(a) Fure Axial Stress Condition –tie Shearing=tress Condition

Nadai
tudes, the
of a plate
two moduli
conditions

(reference 8, pp. 355 ff) pointed out that two stress atti–
case of pure axial bending and the case of pure twisting
(figs. 6, 7), are particularly suitable for determining the
of elasticity of isotrojic plate—shaped bodies. The boundary
in both cases are easily established and the deflections of

the”plate readily indicated, since the central area of the plate assumes
a geometrically simple shape in these loading conditions.
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The determination of the moduli of elasticity from bending and
torsion tests, especially for plywood plates, which by reason of their
inhomogeneous structure over the plate thickness manifest different
elasticity moduli in bending than in plane stress,-(see section 5) has

. the advantage to tlie’extent that the decisive moduli, necessary for the
investigation of.the plate stability, are already obtained this way for
tending and torsion stress.

Nadaits method for isotropic plates can also be extended to include
the general+rthotropic plate and the six moduli of this plate computed
with it.

A relation between the stresses introduced by the loading and the
deflection of the plate is obtained by equating the distortions Ex> ~va
and ~ according to equations (1) and (27) to each other:

“.

#w
6X =-z-=

ax2
~1’ax+ a12’uY +cf~3’T

2
7=.2Z?2= Cqs’cfx+ q~t~y

axy + a33tT

On assuming a uniform tension stress and shesring stress attitude,
the stresses

Putting

ax = UXo; ay

in the plate are constant.

for the stresses in the outer layer z = ~ of the plate

= ~yo ‘d T = To, equation (38) can be written as

&?&. _ ~ (allt~x + a12rayo
o + ch3’To)

d%—= –: (~2taxo+cL22tcsyo+ a23tTo)
dyp

(38a)

&=_
*(%3taxo + %23’uyo

b
+ a331To)
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The general form of a f~ction which satisfies equations (38a), is

ax
o

w=—— ( ‘ 2+~12’f+al~’xy ‘>(~2’x2+ ~p’Y2+%3’xY)all x
s )

IQ
-s (q 3‘X2 + 93 ‘Y2

where the remaining terms

since they merely define the position of the plate in space”. Limited to
the case that the plate is deformed in the plsne only by a moment Mx,

it results in a pure longitudinal stress condition and, since Uyo and To

disappesr, the equation of the elastic surface – after putting

)+Cqjtw + Clx + Czy + C3 (39)

c~x + Czy + C3 are disregarded as unessential

.

reads

w

~=q_6%
Uxo = —

w bs2 s2

6%._
S3 (all‘X2 •l-alp‘y2

If the plate is stressed by a moment

6% 82w=—
S3 (

a12 x

If the plate is stressed by

deflection function w is

+ ~21y2

+ %3 ‘Xy)
~ only,

+ 93%)

(40a)

(40b)

‘Xo = ~yo = O, and

%Xyw.— ( ?=’+aa13 x ‘y2 + a
S3 23 33’XY)

(40C)

.
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On the isotropic plate, a pure longitudinal stress condition, that
is, a load due to bending moments ~ or ~, produces pure bending, a
load in pure shear, that is,a load due to twisting moments” ~, produces

a pure twist.- (The term with “xy in eqiiati.on’”(40a)-‘and(40b) disappears
for the isotropic plate, because u13i = ~3~ = 0; the elastic surface is

therefore symmetrical to the coordinate axes, that is, pure bending results.
The terms with X2 and y2 in equation (40c) disappear, the elastic
surface is antisymmetrical to the coordinate axes, hence pure twist). But
on the general+rthotropic plate, bending moments, as well as twisting
moments, even if applied separately, induce bending and twist simultaneously.

Equations 40a to 40c indicate further that the pure longitudinal
stress attitude is suitable for determining the moduli

while the pure shedring stress permits the moduli %3’, %3’, a33’ to

be measured. Consequently, modu.li a13t and %3’ can be obtained by

either one of the two conditions, but the modulus of rigidity a33t

only by the sheering stress, the moduli of elasticity and transverse con–
traction moduli all’, %21 and %2’ only by means of the pure longi—

tudinal stress condition. Experimentally, the task can be confined to
measuring the moduli alltj %21 and a12f for the longitudinal stress,

and

(b)

the moduli a131, ~3~ and U33’ for the shearing stress condition.

Experimental Determination of the Moduli of Elasticity

The measurements for the determination of moduli ~1~, a22t, and

alp* are, according to Nadai?s proposal, made on a plate strip supported ,

at three points. The bendingmoment producing the pure lontudinal stress
in the plate is applied by means of linkages which load the plate in
three points (fig. 8). The deflection is obtained from the difference
of the readings of three dial gages mounted on the x axis. By
equation (40a)

65 2
‘x = — all’x

~3

,, ...,.. ..——.-
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for the x axis (y = O), hence for modulus a~’, when the two outer

dial gages are spaced at distance x from the central gage,

(41)

A corresponding measurement on the y =is gives

(42)

while appropriate variation of the direction of the principal exes of
the plate with respect to the coordinate axes gives

and

Wxs3
1~12f . ——

6my X2

respectively.

(43)

(42)

The measurements for the determination of the modtii u13’, ~3’,

and ’33’ sre made on a square plate which is loaded according to

figure 9. The loading produces a pure sheering stress since, (refer–
ence 6, pp. 299 ff) the twisting moments ~y occurring at the

boundary of the plate can be replaced by two equal and opposite trans–
verse forces Q normal to the plane of the plate, in the corners of
the plate. The total single force in a corner is

all1

The measurement

and ~2’.

P=2Q=~

of moduli ?3’ and c93’ is similar to that of

——
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If the deflection of the plate is measured along the x sxis
(y=o) ‘

cc .. . . . .,

(44)

follows from equation (40c), where x again denotes the distance of the
two outer gages from the central dial gage.

Measuring the deflection
‘Y

along the y axis gives the modulus

, _ WYS3
%23 -

3Py2
(45)

The modulus of ri~idity iS defined by the measurement of the
deflection of the plat= along its
equation (40c); the deflection of
diagonal 1 gives – the outer dial
x = y =b, and X = y = —b

diagonals (fig. 9). According to
the plate in the zero point on the
gages being mounted at the points

W1 =

and on diagonal 2 with
x=4,y=b:

($ %-3‘b2 + ~3’b2 + a33’b2)

the corresponding points x = b, y = -b, and

~2 . = ~13,b2 , ~ ,~2
S3 ( 23 - a33‘b2)
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Forming the difference leaves

W1 —.W2 _ 6Pb2
~3 ’33‘

and hence the modulus of rigidity a331 as

( )S3‘1 – ‘2
’33’ =

6Pb2
(46)

~. Plywood as Orthotropic Plate

(a) Application of Theory of Elasticity of the Homogeneous General–
Orthotropic Plate to Plywood

Since the results of the present report in their practical appli-
cation are primarily intended for plywood, it is necessery to explore
the extent to which the theory of elasticity of the homogeneous general-
orthotropic plate is applicable to plywood.

Whereas the ordinary wood veneer can, with some Justification,be
regarded as a plate of orthogonal, anisotropic homogeneous material to
which the theory of elasticity, and particularly also the theory of
bending of the orthotropic plate, can be applied, the combination of
single veneers at 90° to each other into plywood also presents an
orthotropic plate, but inhomogeneous over the plate thickness. In
consequence, if the relations applicable to homogeneous material are
formally retained, the moduli of elasticity of a plywood plate assume,
in part, different values for stresses in its plane than for stresses
which tend to deflect the plate out of its plane.

For a special-orthotropicplate consisting of three identically
thick beech veneer plies, for example, whose veneers by themselves show
the moduli of elasticity El . 180,000 kg/cm2 and E2 = 5,000 kg/cm2

respectively, the assumption of equal strain of the glued laminations
under longitudinal stresses in the plane of the plate, with transverse

—----- ,, , ,.-,. ,— . .--. -,.--.— —.—.—-. .,. ,., ,
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contraction disregarded, gives the modulus of elasticity Ex in

31

x direction (fig. 10) as

and in y direction as

2El + E2 *
= = 121,700 kg/cm2

3

El + 2E2 *

‘Y =
= 63,3oo kg)’cm2

3

But, stressed in bending by moments about the x or y exis, the
retention of linear strain distribution over the plate thickness gives
the moduli of elasticity

[ ()12 g3El 2(~)3 + ‘s33
~EJ

Ex=—=
J

-
12

Ex== El + ~E2 = 173)500 kg/cm2
27 27

and for E
Y

Ey = 26 E$El+z p = 11,500 kg/cm2

that is, substantially different values than for the plane stress.,.
Similsrly, the transverse contraction factors in plane stresses are
different from those for bending stresses of the plate, as will be

*Y.*, shown later.

The modulus of rigidity of the special-orthotropicplate, on the
other hand, has, for pure shesr in the plane, the same magnitude as for

*
These values were altered by NACA Reviewer.



.

32 WACA TM 1263

the twisting stress of the plate due to twisting moments about the .x #
or y axis, since the modulus of rigidity of each lamination is of the
same magnitude, regardless of whether the grain of the veneer is in
x direction or at right angles .toit (fig. 11). Therefore, the special-
orthotropic @ate is, as far as the modulus of rigidity is concerned,
homogeneous over the plate thickness. The modulus of rigidity of the
plywood plate should, in consequence, agree with that of the veneer, but
on account of the bonding of the laminations the modulus of rigidity of
the plywood plate compared to the individual veneer, increases according
to Hertel (reference 7), from about G = 7000kg/cm2 to G = 10000
to 12000kg/cm2, depending upon the nature and quality of bonding.

After the four modul.iof elasticity for plame or bending stress of
the specialarthotropic plate have been found - whether by calculation
from the moduli of elasticity of the veneer (cf. next chapter) or by
direct strain and bending tests on the plywood plate - the moduli of
elasticity of the general~rthotropic plate for any angle m can be
obtained by the equations (6)3 so that the theory of the general—
orthotropic plate rem@ins unrestrictedly applicable also to the plywood
plate. The extent to which the assumption of linesr strain distribution
is in agreement with actual conditions must be verified by comparison of
the

(b)

the

calculation with the experimental results.

Effect of Plywood Construction on the Moduli of Elasticity of the
Special*thotropic Plywood Plate

Investigations concerning the effect of plywood construction on
moduli of elasticity of the special+rthotroyic plate have been

made by Hertel (reference 7). Beyond the results of this work, it is
shown in the following that for the moduli all~ a22’ ‘d %2 simple

approximation formulas can be set up for their dependence on the plate
construction, and that the formulas derived for the plane stress of the
plywood plate can also be applied to the plywood plate under bending stress.

(a) Plane stress of plywood ~late.– On decomposing the plywood plate
into the portion on longitudinally and transversely directed veneers
(fig. 12), the strain equations for each veneer portion–the moduli,.
stresses, and distortions of the longitudinally directed plies being
indicated by superscript (1), those of the transversely directed by”
superscript (2) - can be written as follows:

,x(l) =hl(l)ux(l) +@)ay(l)

Gym = ~2maxm + ~2(l)ay(l)

(47)
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and

.6X(2) = all(:)UX(2) + q2(2),uy(2) ‘. .

(48)

(2) = (-q2 (%x(p) + %2(2)42)
‘Y

and for the plywood pla’te

(49)

‘Y = Cqpcfx+ app~y

The shearing strain is disregarded, since, according to the fore—
going, the modulus of rigidity G of the special-orthotropicplate is
independent of the construction of the plywood.

From equilibrium.conditions at the plywood plate, with consideration
of the two veneer portions, follow

ax(l)Fl + ux(2)F2 = UXF

(50)

(l)F1 + ay(2)F2 = UYF
aY

or, when putting. ~ = D

~x(l) + UX(2)D = Ux(l + D)

(50a)

UY(l)+ UY(2)D = ay(l + D)

.
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On assuming uniform strain over the cross section of the plywood,
the condition

,x(l) = ,X(2) =..X

o) = 42) = ,
‘Y Y

is applicable.

Observing that

all(l) = C@)

m (p) = ~22(u

and

a 2(1)1
= ~12(2)

equations (51) in conjunction with (50a), (47), and (48), the stresses

_ (2)
‘x

csn be “representedwith respect
portion (1) and to the stresses

all and a12 follow then from

{9}

and (2)
‘Y

to the moduli

ox and ax.

the relation

of elasticity of the veneer
The moduli of elasticity
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from

~he moduli %2 and likewise %2 can be defined in similsr manner

the equation

d

The calculation gives for %1

C&) ~2(u2 ()~llm q2(u2
~+ D-al#)%2(l)D1-%2(1) - (1 +D)

=all(l)(l +D)
%2(1)2

all

(1+ 5iK5+’H5(
(52)

and correspondingly for a12:

+ D)

(53)

,, , . . .... . ....... .
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According
“elasticity a

to Herteils measurements on beech veneer, the rnodul’iof
have the following values:

all(l) = 5.56 X 104$

-6 cm2%2(1) = 200 x 10 ~

%2(1) . –2.5 x 104$

Since the transverse contraction modulus “1$1) is small compared

()

a12(1) 2
to modulus a22(1), the terms with

(1)
in equations (52) ad (53)

a22
can be crossed out, thus leaving the simplified equations

%(’) #)2

d )D ~ _ “N
a22(1)

+D–
(1

all ‘a22(1 %2(1)

~ (,+”$D)($+D)
and

%(’)
“22(’)

(1 + D)

a12 = a12(1)(1 + D)

(l+~$~D~(~+D)

(52a)

(53a)
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a12(@’
Elimination of the term with in equation (52), leaves

~11(1)%2(1) .

all
= CL+) (1 +D)

(52b)

The effect which the modulus of transverse contraction exerts on the
modulus of elasticity of the plywood is quite small and amounts to less
than 0.5 percent, according to comparisons of the approximation formula (52b)
with the exact formula (52). The modulus of transverse contraction of
the plywood is defined by (53a) with approximately the same degree of
accuracy; with the use of (53a) and (52b), this modulus can also be
written as

a12v=-—= ~--(1) l+D

%J’)
The corresponding approximate equations for

a12 weand v22=-—
%22

D

(54)

the moduli %2

(55)

and

V22= V22(1) 1 + D1 (56)

l+%’OD
~2(U

——
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(~) Bending stress of the plywood plate.– The fact that the bent
plywood.plate has different modfii from the plane stressed plate can be
taken into account in simple manner.

Assuming linear strain distribution over the plate thickness, the
equations (47) to (49) apply also to the bending strain of the lamina-
tions, if the elongation of the laminations is referred to that with or
across the grain, (fig. 13) (say, to the top boundary layer, for example).
The elongations of veneer ~ortions in this boundsry layer must be equal
to each other (equation 51). The equilibrium conditions for bending
follow from the consideration that the sum of the portions of the bending
moment which the veneers support mnst be equal to the total bending
moment applied at the plywood plate

Ux(l)wl +ISJ%2 = Isxw

Uy(l)wl+ uy@)w2 = Uyw

(57)

where WI represents the portions with the grain and W2 those across
the grain to the section modulus per unit length (fig. 13)

J
s/2

~2dF(w~th the grati)

W1 =
-s/2

s/2

J
s/2

‘12W(across the grain)

W2 =
-s/2

s/2

and W is corresponding to the homogeneous material

W=$
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‘2If, as for the plane stress, the factor D = ~ is introduced,
J.

equation (57) takes the same form as equation (50a) and.an the relationsn
“derived’for the pi&&s tress apply”to the bent plate, too; however, it
should be borne in mind that in bending for one and the same plywood
plate, a different factor D is used for determining the moduli of
elasticity from that for plane stress. To illustrate: For a plywood
plate built up of three identical veneers in plane stress, De = 0.5, as
against ~ = 0.0385 in bending; for a plywood plate of five identical
plies, De = 0.667, as against ~ = 0.263 (Table 1).

Figin?e14 represents the m~duli of elasticity En, E22, and the

transverse contraction factors Vll, V22 plotted against the factor D

which characterizes the construction of the plywood. By this D my
desired construction of plywood, hence also plywood consisting of plies
of different thiclmesses, can be defined. The D factors for plywood
of vwious construction, but identical ply thicknesses (3, 5, 7, 11, m plies)
under plane and flexural stress sre shown on the abscissa. The calcula-
tion for determining the moduli of the plywood was based on Hertel?s test
data for beech veneers. According to it, the following averages hold
for the veneer:

Ell = 180jOOOkg/cm2°

E22 = 5,000kg/cm2

v22 = 0.0125

G= 7000kg/cm2

The results of the calculation are included in Table 1. The com-
parison of the moduli obtained by apprcxcimationwith those obtained by
the exact equations discloses only nulnordifferences. Table 1 and
figure 14 also contain the moduli of elasticity for o = 45°, the
determination’of which is given elsewhere.
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(c) Effect of Angle” u on the Moduli of Elasticity

Wood veneer and – according to_the ergu&nts of the preceding
section - plywood as well may be regerded as examples for anisotropic
(orthotropic)material. mowing the moduli of elasticity along the
~rincipal axes, the application of equation (6) permits the representation
of the change in the moduli with the variation of angle m. /

(a) Veneer.- Regarding the moduli of elasticity in the principal
sxes directions of beech veneers, Hertel~s test data are available.
Figure 15 shows the moduli of elasticity a for the veneer with these
principal axes values plotted against the angle O.

It is seen that modulus all‘J a22’, ~2’, ~d a33’ haVe a period
of 90°J while modulus a13‘ ‘d %20’ repeat only efter 1800. The

values of ~3~ and a23’ disappear for 0° and 90° (that is, for

special+rthotropic plates) and agree for ~ . 450 and 135°, respectively.

The msrked anisotropy of beech veneer is particularly apperent on
moduli all‘ ‘d a22’~

which manifest very great”vexiations with the

change of u.

The moduli all’, ~2’, and a33’ are showm again in figure 16, but
1 a12’

in the reciprocal manner of writing En’ = — ad vllt =.—.

hl ‘ all‘
The modulus of rigidity decreases within narrow limits and assumes the

minimum value of G = 475% at u = 45°. Of interest is the modulus
cm

of transverse contraction v 11’, which is positive in the range of the

principal axes directions, and negative in the renge of m = 11.5°
to 78.5°, that is, a veneer striy whose angle o lies in this range
becomes wider under tensile stress, a phenomenon experimentally observed
by Hertel at u = 45°. Besides the measurements of modulus Ell and

v11 at o = Oo, Hertel also made some measurements of the modulus

at u = 45°, which showed En’ = l1,00& ~d v? = -0.185. These
cm2

values indicate good agreement with the computed values of Ellt = 11,709

and v ‘ = +.17.
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(~) Plywood.- With Hertells moduli of elasticity for the single
veneer as basis, the calculation gives, according to the arguments of
Section II, n, the moduli of the princip~ ~es of the PIWOOd rePr-

.-.. duced in table 1, a distinction being necessary between the moduli for
bending and plane stress. The modulus of rigidity of the plywood is

increased to 10,5(@- as a result of the bonding of the laminations~
cm2

‘,,.
kas against 7,00@- for the nonglued veneer.
~m2 .’

Figures 17 and 18 represent the mcdulus a? for plywood of various
construction plotted against angle u, and figures 19 and 20 the corre-
sponding reciprocal values for plywood plates stressed in plane and in
bending.

The equalization of modulus of elasticity Ell and E22 at m = O

and 90° as a result of the cross laminations compared to the simple
veneer is readily apparent; the moduli approach each other with increasi~
number of plies. A balance of the moduli of elasticity in the range
of 45° angle with the E moduli for 0° and 90° is, however, unobtainable
on laminations placed at right angles to each other (orthotropic plywood),
the E modulus drops at o = 45° to about 25 to 30 percent of the
values %1 at m = 0°, depending upon the numiberof plies. An equali-

zation of this rsnge could be obtained also by a plywood which contained
diagonal laminations in addition to those at right angles to each other.
But such plywood has found no practical application up to now.

The modulus of rigidity G for orthotropic plywood shows the typical

rise from 10,50~ at m = 0° and 90° to
cm

The great gain in shearing strength afforded
plates having their grain diagonal for shear
up plates is readily apparent.

about 40,000Q5 at u = 45°.
cm

from the use of plywood
trusses over normally built-

The diagrams indicate further that the modulus ’11 ‘ for plane

stress varies within comparatively narrow limits with the change in
number of plies; in the range of u = 45° particularly, the variation
of the En’ modulus is scarcely noticeable.

The customary method in practice, independent of the construc~ion
of the plywood, to figure with a modulus of elasticity of 100,00~

.cm

longitudinal direction (u = O), of 300,00~ (m = 45°) in diagonal
cm

in
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direction and of 70,00(@- in transverse direction (m,= 90°) appears
~m2

to be justified to some extent according to the values of figure 190

On the other hand, the moduli of elasticity Ell in lending for

(D=O and 90° are scattered over a wide range; especially the values
for three-ply plywood differ considerably from the others. It therefore
seems no longer permissible to introduce fixed values for the moduli of ““
elasticity independent of the construction of the plywood, when plywood
plates stressed in bending are involved.

Even the values of G’ in plane stressed ~lywood are not essentially
dependent on.the number of plies, so that here also the value of 40,00C@&

used in practice independent of the construction seems Justifiable.

But the modulus of rigidity in flexurelly stressed plywood plates
is, for u = 45°~ very much dependent on the construction of the plate.
An interesting particular case is represented by the three-ply plywood
which, independent of the angle u, has a constant modulus of rigidity

of Gt = 10,>0~.
cm

The dependence of the moduli Gt, Ell ‘ =E22’s ’11’ = v22’ for

diagonally oriented plywood plates (o = 45°) on the construction factor D
is also appsrent in figure 14, which shows the minor change of the
moduli, especially of modulus

III. THEORYO

GENERAL-OR

El in plane stressed plates.

F BUCKLING OFT HE

TEOTROPIC PLATE

A. EXACT SO~~ION OF THE PROBLEM

1. The Stability Condition

If an infinitely long, general+rthotropic, homogeneous and elastic
plate strip is stressed at its edges by uniformly distributed sxial
forces Nx and Ny, or sheering forces ~t, respectively, (fig. 21),

these forces produce components at buckling w of the plate, which ere
at right angles to the plate and of magnitude (reference 6, p. 305):

-p . Nx ~2w #w+N&—+2NV—
ax2 axy y ay2

(59)
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If this loading of the plate by the external forces”(through corre-
sponding increaee of the forces) reaches exactly the value p, which -
corresponds to the value p as a result of the internal resistance
against bending according to equation (30), the plate becomes un~table,
that is, it collapses”Into”corrugations”orwrlnklbs.

I
II;‘~ For this extreme.case of stability, the differential equation of the
,!y:..-

//

elastic surface becomes, according to equation (30):
It),

(60)

II

The characteristic values of this differential eauation give the
desired critical loads at which the plate begins to ~ecome ~stable,
the characteristic functions w corresponding to these characteristic
values, the buckling forms of the plate.

2. Formula for Solving the Differential Equation

,For the ir&initely long strip, the solution w of the differential
equation in x direction must be a pure periodic function, in which
case it is then possible also to apply to the extended differential
equation of the generalarthotropic plate the Southwell~ti formula
(reference 4) for the isotroyic plate:

it+ ih: (70)
w=e ae

where ~ is a real quantity.
.

The f,ormula(70), introduced in the differential equation, gives the
characteristic equation

Dut K4 Nxa2
+—._ ~2=o
D22; D22c

(71)
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The characteristic equation gives four roots ~, so that for
●

given R the complete integral of the differential equation reads:

(7@)

With the roots ~ the characteristic equation canalsobe written as

(A - ~l)(k - J.2)(h - A3)(A– A4) = o

or resoltied

A compmsison of the coefficients of the term with As of
equation (71) and (72) gives:

4D23’ ~
~l+~+A3+A4=–— (73)

D22f

The roots A can, therefore, bb expressed by

-I

(74)
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According to the
real coefficients, a
or purely imaginaxy.

45

principles governing the roots of equations with
must always be real and p and y either real

Further comparison of the-other coefficfentB in equations (71) andL>-,
(72) and introduction of formula (74) gives in place of the character–
istic equation the relations:

Nya2
_pa2 _ ~2 _y2 . 2B12K2 ——

’22

(Nya2 D23’ 2
U(P2 –

)

+ ‘Wa ~72) = 2B23~3 + –—— —
D22’ D22’ D22‘ (75)

(a2 - p2)(CL2–

[

72) = B34~4 + _

The quantities Bl, B2, and
the stiffness quantities of the

()

2
2B12 . -6 w +2s

D22? ’22‘

,2

()

Nya2 D23 ‘XYa2 ’23’ 1Nxa2

~ ‘2——–—
~2

D22‘ D22‘
’22‘

D22‘

‘3
represent expressions of sums of

plate:

(76)
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3. The Boundary Conditions and Buckling Equations

As boundary condition for the plate strip, the two extreme cases of
the clamped and freely supported edges ape investigated.

In both cases, there is no displacement normal to theplate at the
edges. For clamped support, the angle of inclination dw/dy of the
plate disappears at the edges, “while,when freely supported, the fixed
end moment My must disappesr. The boundary conditions for fixed end

support therefore read

w=Ofor y=ti
(I)

dw—=Ofory=ti
dy

and for free support

w = O for y.ti

%=ofory=~

(II)

The four boundsry conditions (I) and (II) give four linear homogeneous
equations each, for the determination of the constants Cn in equa—
tion (70a) which~ depending upon the bounday conditions, take different
forms:

(a,)for rigidly restrained support:

i A.l iA.2
forw=O, y=a:

i~
3

iA.4
Cle + C2e +Ce

3
+ C4e = O

-i Al —iA2 —iA.
3

-iAh
for w=O, y=<: Cle + C2e +Ce

3
+ C4e =0

&
iAl ik2 ik

3
iA.

—=O, y=a:
4

‘or dy
CIAle + c2%e + c3k3e

+ C4k4e =0

for $=O’ Y=+

—i).l –iQ -iA, —ik4
c1‘le + C2‘2e

3
+ c3A3e + c4~4e = 0

(1(1))
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Introducing the relation

and equating the real and imaginary parts of (I(l)) to zero results in

Clcos Al + C2COS AZ + C3COS A3 + C4COS A4 = o

Clsin Al + C2sin 1.2+ C3sin A3 + C4sin A4 = O .
●

(1(2))

CIAICOS Al + C2$COS ~ + C3A3COS A3 + C4L4COE h4 = o

CIAlsin Al + C2~sin A.2+ C3A3sin A3 + C4A4sin k4 = O

These equations have solutions different from zero only when the
determinant of the coefficients disappears. The determinant put equal
to zero gives a transcendental equation with the roots ~, the buckling
equation.

This buckling equation reads therefore

“.

Cos Al co; X2 Cos a.3 Cos A4

sin Al sin ~ sin k3 sin k4

Al Cos ?bl A2 Cos A2 L3 Cos A3 A4 Cos A4

I Al sin Al 12 sin L2 A3 sin A3 A4 sin X.4

The solution of the determinant gives

,.

=0 (1(3))

-(h - LJ (A3- J.4)sin(Al– @sin(A2,- A4) = o (1(4))
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Insertion of the”e’xpressions(74) for An

rearrangements, the buckling equation for fixed

NACA TM 1263

gives, after some
end support in the form”

2j37J(cos2P cos 27 - cos 4a) - (4a2 – p2 -y2)sin 2P sin 27 = O (Is)

13.Free support

The first two equations for Cn (from w = -O, y = b) agree

●
with those applicable to fixed end support.

The third and fourth equations follow from the relation (cf. equa–
tion 28).

(II(1))

&2w K%The first term disappears, because — = – — = O for y~a.
&2 ~2

With the relations from equation (70a)

and
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the equations II(1) give for y . - the two equations.forthe
constants %“

,,.

4

E
-i~

Cne
[
D22sh 12 + ?a231&K = o

n=l

49

e

(II(2))

Again introducing equation (77) in (II(2)) and putting the real and
imaginary psrts of the equation equel to zero gives the third and
fourth equation for Cn in the form

*

4

E
[ 1Cncos ~ D22’~2 + 2D23f~R = O

n=l

“2 [Cnsh ~ 1322’~
1

2 + 2D23f&K =0
n.1

Putting for simplification, D22’~2 + 2D23~~~

homogeneous equations for Cn In the case of free

= Dn the four

support read

Clcos Al + C2COS ~ + C3COS A3 + C4COS A4 = o

Clsin Al + C2sin ~ + C3sin A3 + C4sin A4 = O

C1D160S Al + C2D2COS ~ + C3D3COS A3 + C4D4COS X4 = O

CID1sin Al + C2D2sin A2 + C3D3sin A3 + C4D4sin A4 = O

(11(3))

linear,

(II(4))

“The summation sign was omitted in these two equations in the
original version of this paper.

I
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The determinant of the coefficients of this equation system put
equal.to zero gives again the buckling equation for the case of free

● support. Development of the determinant results in

(q - D3)(D2 – D4)sin(Xl – A2)sin(A3 - A4)
6

-(D1 - D2)(D3 – D4)sin(11 – X3)sin(~ - k4) = o (II(5))

By (74) the buckling equation for the freely supported plate follows
after various rearrangements in the.form

8a2fiy~os 2P cos 27 – cos 4a]

-[
4a2(p2 + y2) – 1(~2–y2)2 sin 2P sin 27 = O (IIa)

It is interesting to note that rigidity value D23’/D22’ charac–
teristical of the general+rthotropic plate cancels out during the
rearrangements, thus leaving for the general-orthotropi”cplate the same
buckling equations from the boundary conditions, as obtained by
Southwell+3kan for the isotropic plate.

4. Solution for

For the case of pure sxial
form

Pure Axial Compression

compression, the equations (75) take the

_2a2 _ p2 _y2 . 2B12K2

a(p2 – y2) . pJ323Jf3

(a* - p)(a? – Y*) = B3+t4 –n+2

Nxa2/D22 being abbreviated to nx.

(75a)
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The three equations (75a) in con$znction with the buckling”equa-
tion (Is) and (IIa) permit the four unknowns, a, ~, 7, and nx, to be
defined for any, for the present assumed, fixed value of tc. The minimum
value of the values of nx with respect to ~ gives the desired
buckling load of the plate. The stiffness characteristics of the generel-
orthotropic plate enter through the constants Bl, B2, and B3S which,

in turn, are related to the quantities D1l’, D22’, ’33” D13f, and D23’

in the.qualifying equations (75a).

From the first two equations

P2 = –B12#

72 = –B12~2

of (75a), p and 7 are found as

~3
+B23F-u2

_B23$-~2

and from the third equation follows

Nxa2 B34~2 –
(a2 _ p2)(a2 –72)

‘x=—=
Dt ~2
22

(78)

(79)

In the following ~ is always assumed real, while y can become
real as well as imaginary (reference 1, p. 280).

From the transcendental equations (Is) and (IIa), which for
imaginary y can be written in the form

2p ;
[ IL 1
COS 2P cosh 2: - COS 4a — 4U,2– ~2 - 72 sin 2P sinh 2:= O (Ib)

and

[ 1h2~COS 2P cosh 2:– COS 4(Y.–

[ 1.
4U2(~2 +72) –(p2– 72)2 sin 2P sinh2f= O (IIb)

the value a for constant ~ can be obtained from equation (78) and
with it the quantity nx from equation (79). By repeating the
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calculation for other values of R s nx can be represented as function

of tc, the lowest value of which is the looked-for buckling load ~. ‘

[

D33
For the case of the special+rthotropic plate B2 = O, B12 = —,

D22
see equation (76)] a close~ solution cam be given for the buckling load
of the freely supported plate. For the special~rthotropic plate, the
equations (75a) assume the form

–2a2 – P2-72. B12K2=2%K2
D22

(U2 – pz)(a2

CL(p=’– 72) = ()

’11 ~4
- 72) =B3~44–nx~2’— nx~2

’22

(75b)

From the second equation of (75b) follows a = O. The buckling
equation reads then:

(B2 + 72)2 sin 2P sinh 2; = O (80)

Since sinh2 ~ >0, the last equation gives

From it, the first equation at (75a) follows as
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and, after introducing (82) in (81), the conventional buckling load
formula (reference 6, p. 382).

and (83)

Nxa2 ~p(if)ti+~
nx=—=—D22 2 D22

The result indicates that the buckling load for pure compression of
a special-orthotropicplate for ~.o and for u = 90° is of the seine
magnitude, while the buckling lengths for m = O and a = 90° are of
different magnitude.

>

9
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The buckling load of the special-mthotropic plate for the case of
clamped edgeal cannot be given in closed form, but the solution can le
represented in simple form as function of the “characteristic value” of

the orthotropic plate ~ = G and determined in simpler manner

’33
than in the general-orthotropic case, because a = O.

The equations (78) hold for this case also, but the buckling
equation takes the form

from

(2ql–
)

COS 2P cosh ~ = (P2 + 72) sin 2P sinh 2;

Rearrangement

equation (79)

results in the transcendental equation

(84)

ptanp. –-zt~~ (85)
i 3.

follows again

Nxa2 %1 K2 _72Pg—.-=%
~2

’22

and from (75a)

2%3
’22

hence the buckling load

N ap _ %1D22
~2p2

x–
(72 + pp) + 2D33 2

2D22
(86)

7+p2”

.
‘The investigation of the specialarthotropic plate with clamped

edges does not appesr in the literature and is therefore appended f“or
the sake of completeness.
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or

Nxa2 D11D22 72 + 132—=. —

’33 ““ ’332 2

The value ~a2)D 33 for every fixed

represented as function of the value “7
(7 and P ere connected through (85)).

psxsmeter ‘llD22/D332
regarded as independent

55

(86a)

can be

variable

The minimum of this function represents the looked-for buckling
load. The result of this calculation is included in table 2 and plotted
against the “plate value”

in figure 22. The closed solution for the case of the supported plate
is included in the corresponding form in this diagram.

In Section IIIB the case of the clamped plate which permits no
closed formal representation of the result is indicated by an approxima-
tion formula in the form

%= 5((’2 + D33) (87)

which is also included in figure 22 for comparison with the exact values.
The accuracy of this formula csn be substantially enhanced by writing
(as seen from figure 22)

(87a)

The differences throughout the explored renge O = 0.2 to 5 ,are
very small, except in the range O = O to 0.2 where they become greater
andatil= 0 assume a maximum of abbut 12 percent. At O = 0.2 the
error is only 12 percent; at ~ = 5, about 1.8 percent. The values
between these two cheracteristic values have an even smaller clifference.
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The case of the isotropic plate is contained in the special-
orthotropic plate for the characteristic 3 = 1 and gives for the
supported plate

Nx
~2

‘2 D=9”87$

and for the clamped plate

17.2oDNx=—
a2

5. Solution for Pure Shear

In the case of pure sheer, the equations (75) read

a(p2 - 72) = 2B23K3 + ~~ (75C)
t

(a.2– ~2)(U2 - 72) = B34~4 + 2&2

when writing for abbreviation, ~=~ ~d A. D23’_ —e
D22 ’22t

As in the case of pure compression, the unknown a, ~, and 7 can
be determined from the three equations and the buckling equation (I)
and (II), when an arbitrary value is assumed for ~ . After determining
several ~ values, the minimum of the function n= = f(~) gives the
desired buc~ing load of the general-orthotropicplate. From

.—. ,-.-,, -., ,, -,, ,,,,,-, ,,, ,.,, ,-, , , ... ImmI I I I I lml 11 11 Iin-mmm~m I I1111
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equations (75) follow after considerable calculati~s the quantities ~
and 7

72
/ (

2
= *12tc2 -a2 + 2Ykuc- 4A2~2u2 + 41iB23- B34)K4 + @ 3

+ 2a

(88)

and, in addition

a2
* .: (pp – 72) - 2%23R3

% = D221 (89)

From the buckling equationa (I) and (II), the value a and hence n=
is obtained
The minimum
load.

For the
simplify to

again for chosen values of K with the aid of the equations.
value of ~ with respect to R represents the buckling

case of the speciel+rthotropic plate the equations (T5b)

’33 ~~a2_p2_y2=2_

’22

a(p2 +) .I-&K

(a2 – %1 ~4p2)(a2 - y2) = —

’22

%~, ’23 = O, B24 = ~because B12 = —,and A=O.
’22

The buckling equations
change. Seydel (reference

J “2g3

are also applicable to this case
3) determined the buclding loads

(75d)

without
for this
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case in a very thorough study by means of equations (75d) and plotted
the result against the plate characteristic.

For the case of the isotropic plate with the still further simplified
equations,

–20? – p2_72= &’

U(132- 72) = nWK (75e)

(CZ2- ~2)(a2_ 722)= ~4

the solution by Southwell and Skan (reference 4), was obtained with
N a2
~ . 13.16 for the supported plate and n= = 22.70 for the

%Y =
clamped plate.

B. TEE APPROXIMATE SOLUTION OF TBE PROBLEM

An increase in the number of elastic constants on the general-
orthotropic plate compmed to the general-rthotropic plate (in pure
compression the number of elastic constants increases from two to three
and in pure shear from two to four (see equations (75a) and (75b)
or (75c) and (75d)) renders the determination of the buckling loads and
buckling lengths by meens of the previously discussed exact method
extremely time-consuming, since in view of the greater combination
possibilities of the elastic constants a much greater number of buckling
load determinations must be carried out.

1. Method of Solution

The approximate solution can be obtained by the energy method. On
transition of the plate from the plane to the buckled equilibrium
position, hence, on reaching the critical buckling load, the energy
stored in the plate by the bending strain is exactly equal to the work
performed by the external forces:

Ai–AA=O (90)

The internal bending energy owi~ to the deformation w of the
plate is indicated by the equations (36); the energy of the external
~orces during the buckling process may
form

be expressed in the following

1

(91)

L ..4
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Equation 10 becomes then

J(7[()53 a%#w+ %2, &f2&i2+2a12’~~

()

d% a%+,4%3L_—
E “11’ ax2 ay2 ax2dxay

awaw 2

()]

&
+ 2NXY & dy

——+NY ay &c dy (92)

The condition for stable equilibrium of the plate that the energy
change during the buckling process shall be a minimum, hence

can be satisfied by variation of the displacement w of the plate in
equation (12). This veriation process yields the differential equation
(cf. III, A, 1) for the elastic surface of the buc~ed plate ad the
characteristic values of this differential equation give the exact
buckling load. But if the buckling load is to be determined only approxi–
mately, an approximation formula for the buckling form can be introduced
in equation (12), which differs from the actual form of the buckling
surface. In this case, a formula is chosen which contains two free values
which, by application of the condition of minimum energy change during
the buckling process, can be so determined that the presumed buckling
form is as close as possible to the actual form.

A simple formula is applied in the form

w = A cos ‘i%sin ~ (x – ey) (93)

for the freely supported longitudinal edges of the plate, and
●

(=$ 1 )2fly ‘
w -Acoer sin~ (x-~y)

for the fixed end support of the longitudinal edges.

(94)
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This function, originally given ly Timoshenlco(reference 6, p. 365),
represents infinitely long buckled surfaces with the hslf=wave length L
(fig. 24), whose straight nodal lines running diagonally to the longi-
tudinal axis x form with the y axis the angle q, the tangent of
which is equal to e; L and e are the free values.

Formula (93) satisfies only the geometric boundary condition w = O,
while the boundary condition MY = O (see equation II(l)) is not

satisfied, because neither %w;hy2 nor ~2w/bxay disappear at the
boundaries y = ~, as a rule.

On the other hand, formula (94) satisfies both w = O and &=(),
by

but the two formulas still do not satisfy the differential equation of
the problem.

The nodal lines of the actual buckling surfaces are, in general, not
straight lines. But, as even comparatively rough assumptions for the
buckling form yield satisfactory approximate solutions for the buckling
load, the simple formulas (93) and (94) should efford sufficiently exact
buckling loads.

As in the exact solution of the differential equation, so the buckling
load of sn infinitely long orthotropic plate strip freely supported, or
clamped,
and pure

(a) Free

respectively, will be investigated for pure sxial compression
shear.

2. Approximate Solution for Pure Axial Compression

Support

Performing the integrations indicated in the equation (92) by means
of formula (93), the buckling load for the case of pure axial compression
follows from (92) as

– 4D23 ,($J+ s)] (95)
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.

The two free values L and a are obtained from the mininuuncon-

~=o~d~A
‘i:ions aL

— = O, or, what,amounts to the s- thing, from
,&

the conditions ~“=o ~d ~’ = o.
~L a~ .

Eronl ~= o“ follows
&

(96)

Although one unknown L/b can be eliminated from the equationa (96)
and (97), no closed expression for c with respect to the stiffness
quantities cen be given, “onaccount of the ensuing equation of the sixth
degree for 6; the values e and L/b from equations (96) and (97)
must therefore be obtained by a graphical method.

The introduction of L4/b4 in Nx simplifies the expression for Nx
in

fi2

(

L2 D33‘
Nx=2—D22~—+362+— -

)

6~G
b2 ~2 D221 D22t (98)

For the specialarthotropic plate, formulas (96), (97), and (98)
give the conventional closed relation for
orthotropic plate. The term with D13f

equation (97), hence e = O and equation

.—

the buckling load of
and

(96)
’23t disappear

therefore gives

an
in

(99)
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.

For Nx, after insertion of (99)

(12Y(2 ~ ~Nx=—
b2

1122 + D331)
(loo)

This relation applies exact, since for e = O, and %3? =D23’ = O,

formula w = A cos ~ sin ~ satisfies the differential equation of

speciel-orthotropicplate (equation 32).

A simple relation holds further for the particular case of an
orthotropic plate of equal principal stiffnesses %1’ = D22’, the
directions of the fibers of which run at 0° and 45° to the edges, since
in these cases the terms with D13’ and D23’ alSO disap~~ (cf.

equation (23a)) and G = O. The stiffnesses D1l’ = D22’ and D ‘
33

refer then) of courses to the momentary direction of the exes.

The buckling load is then

Nx = ~ (D22’ + D33~) (101)

and the half+ave length ~ = 1.

This simple relation does not hold, however, when arranging an
orthotropic plate of equal.principal stiffnesses under erbitrsry direc-
tion of fibers because then G does not disappeer.

Lastly, for the isotropic plate, it gives

%1‘ ‘D22’ ‘D33’ ‘D

and

%3 ‘=D23’=0

and hence

4YT2D
Nx=—

b2

,—.—-l--l--—m-— -1 1- III —,mm--mm,m . ■, m ., n n 98 9, 8.,9 m II
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(b) Clamped ~pport

The determination of the correspondingbuckling loads of the plate
with.clamped edges in exial.compressionby formula (94)”gives

(102)

~=o ad
The minimum conditions

~L
for defining the free values e and L/b:

16L4 4_4D23’ ~3 + 2=33’ 62—-1-=e
3 b4

’22‘

bNx
— gfve the two equations
be

-4=E+K (103)

’22‘ ’22‘

(~bp Es -’-3-(--)=0 “w)
’23’ ~2 + ’33’— .—

“4 L2 -3—
D22t D22t

On introducing L4/b4 into the equation for Nx, the simplified
expression

(Nx=:$ ‘2 )’33’ 6D23’ ~
D22’-.4~+3e2+— -

b ’22‘ D22S
(105)

L. is obtained.
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For the case of the speciel~rthotropic

The buckling load follows from (105) as

NACA TM 1263

~la.te,equation (103) gives

(106)

(107)

while the expression applies exact for the buckling load of the supported
orthotropic plate, the expression (107) for the buckling load of the
clamped plate is only approximately valid, because the formula (97) for
e = O does not satisfy the differential equation.

The relation for the buckling load in the particular case of equal
principal stiffnesses (u = 0° and 45°) of the clsmped plates reads

8 YT’2
Nx=-— (/- )3Dll + D333 b2

and the half+ave length

L1-=—
b2 r

3 =0.658 (10!3)

The approximate expression for the isotropic restrained plate is

m+wJ#D=8x2”73br2
Nx =

3 b2 3 ~ D=7.28~D
b2

The exact solution is (reference 6, p. 345)

~2
Nx = 6.96—D

b2
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3. Approximate Solution for Pure Shear

(a) Free Support

As for the pure compression the integrations together with
formula (93) give the buckling load

65

*

(109)

The expression for the buckling load in shear therefore agrees, up
to the factor l/2e, with the relation for the buckling load in con+
pression. Consequently, the equation aNq/aLc for determining L and e

must be identical with the corresponding equation (96).

The second qualifying equation ~~y/he gives the relation

( ’23’ 3 + z ’33’ 2
“b~= 3c4–8— 6

%1 ‘

)

2

L2
yE—— ’33’ L2+6E—2—–—= o’ (110)

’22’ D
22 ’22‘ ’22’ b2

Introducing equation (96)in (109) again gives the simplified
expression for Nxy

(n2D2L2 ’33’ ~ ’23’
N _— —- —
Xy – ~bz 2

,)~+3’2-+D22’ D22°
(111 ]

For the isotropic plate, D22 = D33 = D; D23 = O;”hence the expression

(1;2)
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This equation is identical with Timoshenko~s result (reference 6, p. 361)

and

w g-r-L–l+u2=l.225

hence by (112)

The

the

(b)

exact solution is

~2

‘XY = 5.35 —D,
b’

error of the approximate solution amounts to about 6 percent.

Clamped Support

The corresponding calculation for the clamped plate gives the
qualifying equations for e and, L; in this instance, equation (103) is
applicable as in pure axial compression and also the equation

.

( D23*
3G4–8—

’22t

The critical

i-v 4
xy=~

)Dllt
~3+2D33’c2__ + 8G2 8’33’ 16L2

D22‘
-–—-—=0 (112)

’22‘ 3D22’ 3b2

shear load is

~2

(

~2

~ D22
’33‘t4$+3G2+g–

)

6~~ ,
cb D22t

(113)
—— /

●
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For

and ~ =
b

. .

the Isotropic pla~e, equation(103) and (112) give G = 0.760

0.826 and hence by (113)
..

Nx = 9.60 fi
b2

Since the exact solution gives

Nx = 8.98$

the error of the apprwimate solution amounts to 6.7 percent.

C. BUCKLING LOAD OF TEE

SHEAR LOADING

ORTHOTROPIC l?LNTEUNDER COMPRESSION AND

FOR THE PARTICULAR CASE o = 4’5°

In order to minimize the paper work required for the determination
of the buckling loads of the generalarthotropic plate, the results for
severel important specific cases ere reproduced.

Of particular interest in practical application is the case of the
general-orthotropic plate where the directions of the principal axes of
the plate ere inclined at a 45° angle relative to the plate edges. For
the calculation and especially for the representation of the results,
this case yields simplifications, since at u = 45° the relations

%1 f = =22’ sre applicable (see equation (23a)). The results cen then

be represented in general form as function of the stiffness ratios D23t/D~’

and D33~/D22S, since, owing to equation (23a), only these two values

appeer in the qualifying equations ((75) and (76)). These quantities
sre determined in the subsequent section (IIID) for the special stiffness
combinations of plywood of varying construction over the entire range of
angles U(U = o to 1800) in
relationship between buckling

1. Results

order to demonstrate the characteristic
loads, buckling lengths, and angle m.

for Pure Compression

The buckling loads ~ of the infinitely long general-orthotropic
plate strip freely supported at the longitudinal edges and stressed in
pure compression are shown plotted against the parameters ‘23’/=22’ ad
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D33 ‘/%2 ‘ in figure 25 “forthe specific case m =“450. The values were

obtained.by the approximation method described in section IIIB. The
appraimation is made by the graphical determination of the values L/b
and c from e,quations(96) ~d (97)
equation (98).

For purposes of comparison with
calculation a few of the ~ values

been included in figure 25.

and their subsequent insertion in

the results obtained by the exact
obtained by the latter method have

The method of determining the exact buckling loads is as follows:
first, the constants Bl, B2, and B3 for a specific pair of values

D23’/D22’~ D33’/D22’ exe determined by equation (76). After these con-

stants are introduced in equation (76a), the buckling load nx for a
number of specifically assured values of fc can be obtained with the aid
of equation (78) and the buckling equation (IIb) from equation (79).
The characteristic behavior of the function ~ = f(~) is shown in

( D23t
figure 23 for the pair — =

)
o.5, ~=2. The minimum of this

’22 ‘ D22

function represents the looked–for buckilingload.

A number of further exact results are obtainable from the qualifying
equations (T5a), without making the previously described calculation, for’
verious particular combinations of D23’/D22’ ~d D33 ‘/D22’s

(a) When the stiffness ratio D23t/D22t takes the value zero, that

is, when the plate has the same modulus of elasticity (Ell = E22) along
both principel sxes, the qualifying equations (75a) cam be written in
the form

’33’ ~2_a2_p2_72=2

D22 ‘

a(j32- 72) = () (75b)

Dll‘
(a2 - ~2)(a2 - 72) . — ~4 2-nxtc=~ 4 — nx~2

D22‘
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The equations agree tith the e~ations (75b) for the sPecial
orthotropic plate, except that instead of the stiffness ratios ‘33/D22

~d D1l/D22 referred to the principal qxes directions, the ratios

‘33’/D22t and Dll’/D22t appear for m = 45°. At ,m = 45°, ~1’/D22t

has the value unity.

The resulks obtained for the special-orthotropicplate apply also
D23 ~ ’33when —= O,to the case. m= 450. The plate value
’22‘ m

then the expression D33t/D22’. The buckling loads represented

figure 25 for ‘~ = O by a straight line are therefore exact

’22t

becomes

in

values.

(b) A number of other exact values maybe found in simple manner
for the particular caBe

;2@@%-q=o

(114)

The qualifying equations take then the form

a(p2 -72)=0 (115)

(a2 _ ~2)(a2_ 72) =B3J+~4_%~2

For the special-orthotropicplate (the buckling equation (Is) holds
in the same form for the general as well as for the special+rthotropic
~late), the exact relation

Nxa2 #
nx.—

D22t
= ~ (B12 + B32) (116)

is obtained, since a = O.
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The wave length is

and

NACA TM 1263

(117)

L–=B3
b

For thie particular case between D23‘/D22’ ad D33’/D22’, the

relation

()
12

’23 ’33’ ~2 — =—-
D22~

’22‘

is defined by equation (114).

Hen~e by equations (76)

(118)

~sertion of these values in (116) gives for the buckling load

nti~fN~)=fi2[-(~J’
and for the buckling length

-1

(119)

(120)

—11—-~ -m u- ■mll I ■l-m -1 1111111111-
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The equation (119) represents a number of exact buckling loads,
which in figure 25 lie again on a straight line (denotedwith sub-

>..
script “B2 = 0).

D23’
—.o and B3=0, the13i”thepcirticularcase D22,

values nx = YC2 and ~ = 1 valid for the isotropic plate ere obtained

’33’ 0for —= .

’22‘

(c) For the comparison of the exact with the approximate solution,
it is further of interest that the approximation formula w (equation 93)
for the buckling surface for the two perti.culsrcases treated In (a)
end (b) satiafy the boundary conditions of the problem and yields the
buckling loads which agree with the exact values. Accordingly it may
be presumed that the approximated results in the vicinity of these
particular cases themselves do not

Introducing the approximation

w=Asin~
,b

in the boundery conditions for the

(1) w= O for y=;

differ very much from the exact values.

formula for w

sin: (x-ey) (93)

wpported plate

bsnd y = -Z

(121)

bfor y=~and Y=-Z

it follows

(1) that w = O is always satisfied for y = ~ and y = - ~

$W
(2) that — bdisappars for y = ~ and y = -$ leaving as

ayp (122)
condition
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After
tion (112)

inserting $%/~y2 and &%/~xdy, it is apparent that equa-
can be satisfied only.when the relation

D23t
e=— (123)

’22:

is valid..

The case

buckling load

D23~
c=~= O yields from the approximation equation the

already derived in
resuit.

The relation

gives the buckling

From equation

~2

()

’33 ‘
‘x =Tl+————

’22 ‘

(101 )

section B, II, 2 and which agrees with the exact

D231
G=~ . introduced in the approximate equation (96)

“22 ‘

lengths

L2

()

D33’
—.
b2

$3-7

22‘

(97), further follows the

,2

()

D33‘
2 ‘a =7+1=
D
22r ’22

and from equation (98) the buckling load

()D33’fi2
nx=~ 3 ——

D22t

relation

o

(120a)

(l14b)

(l19a)
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The expressions for L2/b2 and nx obtained from the approximate
’23’ ~e therefoequations with the condition e =
D?

re in agreement with
> . ., 22

the exact values for the specific case B2 = O. That this actually is

the case follows from the equation (llkb) which is identical with the
qualifying equation B2 = O.

These considerations indicate that for B2 = O the approximate

solution agrees with
equation. The nodal
lines – which is not
respect to the axis,
D23’/D22~.

the exact solution as obtained by the differential
lines of the buckling surface are actually straight
the case as a rule — running at an engle with
and the tangent of which is exactly equal to

In figme 26, the buckling loads ~ sre shown

‘23’/D22’ as abscissa and D33’/D22’ as parameter.
D23’

the buckling load is maximum for = O, that is,
D22i

stiffness in principal sxes directions (cf. equation

plotted against

It is seen that

for plates of equal

(24b)), and that
the buckling load decreases with increasing (~bsolute) value D23’/D22’s

that is, increasing difference in stiffness in the principal sxes direc–
tions of the plate, and assumes the value zero in the case of vanishing

()

D23‘
flexural stiffness in one principal axis direction —==.

’22‘

The buckling loads lie within an area defined by the range of
existence of the factors D23’/D22’ and D33’/D22c (fig. 5a). The
boundary lines of the existence range shown in figures 25 and 26 represent
the boundary lines traced in these diagrams. Since the compressive load
is symmetrical with the longitudinal sxis of the plate, the buckling

() ()
—

45° ~> O and m = 135°
D23? .

loads for u = —<O sxe the same.
’22 D22?

Therefore, the two boundary

~=-+ ‘3’’’”

lines

()
~=~1+D33’ ad
D22 D22‘

into one line.
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The half=wave length L/b, that is, the spacing of the nodsl lines
of the elastic surface of the buckled plates was also computed from
equation (96) by the approximate method and plotted against ‘23’/D22’

~d D33‘/D22’ in figure 27.

The exact value of the half+rave lengths corresponds to the value ~
obtained in the determination of the buckling loads for which ~ becomel
a minimum (fig. 23). The connection between L/b and K is appsrent
from the equation (70) for the exact formula of the elastic surface;

&$
since e is a periodic function, the half wave L must be equal to
half the period of the function, hence

(124)

D23‘
The half+ave lengths for —= OandB2= O in figure 27

’22f
again represent exact values. They indicate that the error introduced
by the approximate solution is rather small and exceeds no more than
1 percent in the analyzed cases.

D23‘
Figure 27 indicates that for — = O, that is, on plates with

’22t
equal flexural stiffness in both principal axes directions the half–

wave length is ~ = 1, while with increasing D23’/D22’S that is, growing

difference in principal flexural stiffnesses, “L/b decreases, and that
in the extreme case of vanishing flexural stiffness along one principal

D23‘
axis — = fl, L/b drOpS

’22‘
renge are also shown.

The value c, that is,
straight nodal lines of the
running obliquely to the x

to zero. The boundary lines of the existence

the tangent to the angle formed by the
approximated buckling surface of the plate
sxis with the y axis, can be taken from

figure-28. ~he straight line according to the approximation equation (93)
reproduces in

It is only in

angle G=o

i..stancesthe

genersl~ the actually forming nods-lline only approximately.

’23’
the cases — = O and B2 = O that-the nodal lines at

’22‘

’23~
and 6 = —

D22‘
are actually straight lines, because in these

approximation formula for the elastic surface is exactly correc
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/

‘1~. Figure 28 indicate? that the value e becomes zero also for

‘23”’
ILL — = O, that is, the nodal lines sre at right angles to the edges, as
~

I

’22’
-..

c,,

“!

I

is readily apparent in view of the symmetrical structure of the plate.
~~ In all other cases, the nodal lines run obliquely to the edges even
i‘1 under pure compression, similar to the case of the buckled isotropic

\
Ii;:*, plate loaded in shear.~ AS i123’/D22’ increases, the value G increases,

w =il. the value unity, the slope of‘i) to.reach in the extreme case of;,.
y %?2‘

the natal lines to reach the value 45°. The boundary lines of the
existence range are inciuded.

2. Results for Pure Shear

The buc~ing loads ~ of the infinitely long orthotropic plate

strip, freely supported at the longitudinal edges and.stressed in pure
shear, are represented in figures 29 smd 30 for ~ = 450 and u = 135°
plotted against the stiffness ratios D23’/D22’ ad D33’/D22’” The

results were obtained by the approximate method.

To estimate the error of the approximate relative to the exact
calculation, the buckling loads for a number of stiffness combinations
were computed by the exact method and plotted in figure 29a. In table 3,
the exact result is compared with the approximate values. The co~
parison indicates that the result of the approximate calculation, espe-
cially at higher values of D23’/D22’ is no longer in as good an agree—

ment with the exact values as for compressive loading. In the particular
D23‘

case — = O, it is found that the exact results for the special-
D22‘

orthotropic plate can equally be applied to the plate oriented at 45°.

For the case of pure sheer with D23~/D22s, the qualifying equa--
tions (75c) take the form

’33’ ~2_2a2_p2_72=2

D22t

a(j32-72) = n-xy~

(a2 – p2)(a2–y2) = K4
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The equations sre in agreement with equation (75d) of the special-
orthotropic plate, when hearing in mind that, instead of the stiffness
ratios D33/D22 ad ‘11/D22 referred to the ‘principalaxes directions,

the

and

values D33’/D22’ snd Dllt/D22~ referred to u = 45° appar now,

DU r
that ~ = 1 for u = 45°.

+2 t

The exact buclElingloads computed for the special.~rthotropicplate

by Seydel (reference 3) are also valid, provided ~. O, for the

’221
orthotropic plate with direction of fibers at 45°. The plate value

~33/im- again changes to D33’/D22’.

The unusual feature in figure 30 is the fact that the magnitude of
the buckling loads in shear is essentially dependent upon the position
of the principal axis of the greater bending stiffness with respect to
the direction of the shear loading. Figure 31 represents two orthotropic
plates of equal stiffness, one with the principal axis of maximum
stiffness at 45°J the other at 135° relative to the plate edges.

’23’ <o
At m = 45°, En> E22, as seen in figure 31, and —

D22t

to equation (24b); the buckling load – for equal stiffness ratio

assumes, according to figure 30, substantially higher values than

according

D33’
—.
’22t

for

u.)=

the
the
the

D23t
135°, where En< E22 and hence —>0.

D22‘

In practical application, it mesns that by suitable orientation of
principal sxis of meximum stiffness relative to the direction of
shear loads a substantial increase in the critical shear load of
plate can be obtained.

Figure 31 shows the ratio of the sheer loads for these two cases
plotted against the stiffness ratio D23’/D22t. The increase in buckling

load of one over the other is readily seen.
D23‘

values with increasing — –
D22‘

stiffness in the directions of

—...-.

that is, with

the principal

It assumes very considerable

increasing difference of

sxes.
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In figure 32 the approximated halfaave lengths of the buclding
surface formed under the criticsl load are represented in comparison

__with the exact values for several stiffness combinations of table 3.
The agreement is very good.

The approximate value e of the S1OP of the nodal lines of the
buckling s~ace can %e taken from figure 33.

3. Buckling Loads of Plywood

The stiffness values for m = 45° were computed on several plywood
plates of different construction with the moduli of elasticity indicated
in figure 14, and the buckling stresses. helf-wave lengths and nodal
line inclinations determined for compression and shear loading with the
aid of figures 25 to 28 and 29 to 33. The results were then plotted
against the plywood construction in figures 34 and 35.

4. Example

The application of the results described in sections 1 and 2 is
illustrated on a worked+ut model problem:

Consider a very long, freely supported plywood plate built up of
three identically thick plies, the grains of which are oriented at
u = 45° and 135° relative to the plate edge. The plate is b=2a=10cm
in height, by s = 1 mu in wall thickness.

Youngts modulus E for the principal axes of the plate can be
determined by experiment or taken from figme 14.

According to fig’me 14, they are:

Q3Ell = 176,500 ~
cm

kg
E22 = 11,500 ~

cm

Vll = 0.196

V** = 0.0130

G = 10,500 ‘~
2cm

ii
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With these data,
computed by (29a) and

%1
~3

(
t=D22?.=E G+

,3=—
12

f=~
’33 1;

S3=—
12

the stiffness values for
(33)

)1 ’11 + ’22 + 2V11E22
El – V11V22

(10,5OO +47,300) =:57,800 =4.81

the sxes at 45° can be

kgcm
-l-L

( Ell + E22 + 2V11E22
4+$

1
– ‘11V22

(–10,500 + 47,300 + 91,000)

+ 1 ’11 + ’22 – 2v@22— \
2 1

- ‘11V22 J

=~ 127,800 = 10.64 kgcm

-433=-12%3’ = D23’ - S3 ~ ~ 40,550 = –3.38 kgcm for u = 45°

and

= ~40,550 = 3.38 kgcm for u= 135°
12

With these values the stiffness ratios become

D23 ‘
—= ~ 3.38— . ~oa701”
D22 t 4.81

’33’ _lo.64—–—.2.20
4.81

’22‘
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The buckling load of the plate stressed in compression for this
pair of values follows then from figure 25 as

,.,

%c

and hence the buckling stress

and

Nx nxD22’
~x=y=— 2as

The half-wave length of

.

~a2 ““689
=—= .
D22‘

as

6.89x4.81
= = 13.3 kg/cm2

25 x o.l-

the wrinldes follows from figure 27:

L.; b = 0.817 x 10 = 8.17 cm

For the plate stressed in shear, figures 29 and 32 show

(1) for m = 45°

T ~=%=
s

Lb=L“=F

(2) for m = 135°

%@22’ _ 4.56 x 4981 = 88 ~g/cm2.
2as 25 x 0.1

1.76 x 10 =17.6 cm

. 31.65x4.81 . 61 o@/cm2
●

25 x 0.1

and

.~bLb = 0.89 XIO =8.9 cm
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D. BUCKLING LOADS OF THE GENERAL ORTHUI?ROPICPLATE

(FLYWOOD OF VARYING CONSTRUCTION)

NACA TM 1263

~TO m

In view of the large amount of paper work involved in a general
representation of the bucliiingloads of the general orthotropic plate
relative to the stiffness factors and angle o, due to the great number
of parameters, the characteristic relationship between the buckling
loads and the angle u is exemplified on a worked out model problem.

The results were obtained by approximation method, the known exact
values for m = 0°, 45°, and 90° s&e also given for comparison. The
results are again limited to a very long plate strip freely supported
at the edges.

The calculation is based on the modulus of elasticity of plywood
stressed in bending, indicated in table 1.

1. Results for Pure Compression

In figure 36 the buckling stresses in pure compression sre repre-
sented for m = 0° to 1800. Owing to the sy?muetryof the compressive
loading, the buckling stresses are symmetrical to the value o = 90°.
They are of equal magnitude for plywood with and across the grain
(m = 0° and 90°) and increase for intermediate angles u. The maximum
buckling stress for plywood of very many laminations (~) is reached at
CD= 45° and 135°, respectively.

The half+rave lengths of the plate represented in figure 37 indicate
that, if the plate consists of a few plies, the buckling length, with
the grain, is greater than acrose the grain. The buckling load increased
by the greater longitudinal stiffness at u = 0° relative to u = 90°,
is reduced again by the greater buckling length so that the buckling
loads sre the same again in spite of the substantially different longi-
tudinal stiffnesses for u = 0° and u)= 90°.

The ensuing average nodal lines which, as under compressive loading,
are inclined to the plate edges according to section IIIc, and at right
angles to the edges, in a few specific cases only, are shown in figure 38.

On account
stresses are no

2. Results for Pure Shear Loading

of the unsymetry of the shear loading the buckling
longer symmetrical to u = 90°.
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The close
angle
figure

m to the
rather

ures

wave
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relationship existing between sheering stresses and
(D - especially for plywood with few laminations - is seen from
39 ● Owing to the unsymnetry of the plywood structure as well as
shear loading;-the mexfmun-sheeYing”stress occtis at about’60°
than for u = 43°.

The h--wave lengths and the slope of the nodal lines in fig-
40 and 41 also exhibit a marked dependence on angle a, the half-

length - for three-pl~ood - fluctuates between
$= 2“64 and 0“56”

For an estimate of the error introduced by the approximate as
against the exact solution, the exact values for u = 0° and 90° are
represented in figures 39 and 40 according to the results by Seydel and
for” m = 45° according to figure 29. For u = 45° the maximum error
is 12 percent; for other cases the error is less. The agreement between
the approximated and the exact half+ave lengths is remarkably good. The
approximate calculation which involves incomparably less paper work than
the exact solution yields a very good insight into
between the buckling stresses and buckling lengths
standing the cited differences.

the relationship
and angle m, notwith—

Translated by J. Vanier
National Advisory Committee
for Aeronautics

.
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TABLE 1.- EFFECI OF PLATE CONSTRUCTIONOF PLANE ANI FLHURLLY

STFRSSiDPLYWOOD PLATES ON TEE MODULI OF ELASTICITY

Plate stres~edin bending

I

I Plate Stressedin plane

~=oo (J. 450J)Wmberofplies ~

10

I
Eu E22 vu v22 G Eu’ = E22’

D

EU E22 vu v22 “G Eu t = E228 vu! .V221‘IL‘ ‘V22’ G’ G!

80,00i15,0000.450.012510,50011,700

2L6006s,4000.03550.018510,50033>760

10,00075,0300.03010.020510,500SJ+,21O

05,00080,Om 0.02810.021410,50034,330

m,40084,6000.02660.oLzk10,50034,400

4,75C
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+.113 4,750

0.604 40,670

.80,0005,0000.450.012510,5W 11,700 -0.113

.73,50011,5000.~9590.0130m,500 =>570 0.035.038;

*

3 0.5

5 0.667

10, 52c

43,60041,400 0.0544 0.015710,500 31,900 I 0.5160.626 43,520 .263 31, 37C

29,500 55,500 0.0405 0.0174 10,500 33>300 I 0.576

-1-
0.631 44,340

0.635 44,820

.406 37J94C

16,200 68,800 0.0327 o.ol$)k10,500 34,050 0.616

92,500 92,500 0.0243 0.0243 10,500 34,46o 0.637

42,18c

45,14C

.573

. 1.00 92,50092,5000.02430.0243 10,500 34,460 0,637 45,140 .000
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TABLE 2.- BUCKLING LOADS OF TEE SPECIAL-ORTHOTROPIC PLATE STRIP,

IN PURE COMPRESSION VERSUS CHARACTERISTIC VALUE OF TEE PLiYITZ

Supported Clamped plate
characteristic plate approximation according to

value 79 —
Exact values Exact values Equation (87) Equation (87a)

~2
o

~2
— = 4.933 ~ = 4.935
2

6.60 5.80

0.1 5.43 6.69 7.74 6.94

0.2 3.92 7.98 8.88 8.08
—

0.3 6.42 9.15 10.02 9.22

0.4 6.91 10.35 11.16 10.36

0.6 7.90 12.64 13.44 12.64

0.707 8.42 13.88 14.58 13.88

0.8 8.88 14.92 15.72 14.92

0.9 9.38 16.06 16.86 16.06

1.0 - JC2= 9.87 17.20 “18.00 17.20

1.414 11.91 21.96 22.72 21.92

1.582 12 ● 74 23.95 24.61 23.82

2.0 14.81 28.52 29.40 28.60

2.5 17.27 34.00 35.10 34.30

3.33 21.38 43.22 44.58 43.80

5.0 29.61 61.75 63.60 62.80
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TABLE3.-COMPARISON OF Tl?Z RESULTS FORH-Et?SEZAR(o= 45°)ACCORDINGTOTHE

lWFl?OXIMITEMZTHODWITHTIEACTUALRESULTS

’23’ ~ ~ ’23’ 0 > ’23’_ o ’23’ ~ > ’23’—.O —.. —.. —. -1.0”

’22 ‘ ’22 f D22 ‘ ~22 ‘ D22 ‘

Exact Approximatee Exact Approximatee lExact Approximate Exact Approximate Exact
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‘w b

--- -- ---

--- -- ---

--- -- ---

0 0 0
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b %y ~ “xy

-- -.--- ----- -----

-- 2.32 ----- 2.37

-. 8.071.126 8.22

0 12.06 1.45 12.35

1

0.43 13.165

*

1

-4-1.02> 8.77

1.245 13.98

L.462 U3.22

i

1.715]21.8c
I

L

< “xy : “Xy ~ %7

1.021 ------------------------

1.22520.961.45 2j.ho1.45 -----

1.45524.871.692T.Jo1.66-----

1.68228.191.91130.781.86 34.56

----

—

----

----

—

1.%
—

Approximate

-----

-----

-----

39.50

----

----
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m
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According to 28ydel (reference 3), figure ka and 6a.
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Figure 6.- Pure adal stressconditionin a plate.

Figure 7.- Pure shearing stressconditionin a plate.
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Figure 22. - Buckling loads of a special-orthotropic plate under axial stress.
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